Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Quantifying Escherichia coli glutaredoxin-3 substrate specificity using ligand-induced stability.

Identifieur interne : 000B81 ( Main/Exploration ); précédent : 000B80; suivant : 000B82

Quantifying Escherichia coli glutaredoxin-3 substrate specificity using ligand-induced stability.

Auteurs : Tobias H. Elgán [Suède] ; Kurt D. Berndt

Source :

RBID : pubmed:18757366

Descripteurs français

English descriptors

Abstract

Traditionally, quantification of protein-ligand affinity is performed using kinetic or equilibrium measurements. However, if the binding reaction proceeds via a stable covalent complex, these approaches are often limited. By exploiting the fact that the conformational stabilization of a protein is altered upon ligand binding due to specific interactions, and using an array of selectively chosen ligand analogs, one can quantify the contribution individual interactions have on specificity. We have used ligand-induced stability as a basis to dissect the interaction between glutaredoxin-3 (Grx3) and one of its native substrates, the tripeptide glutathione. Taking advantage of the fact that Grx3 can be trapped in a covalent mixed disulfide to glutathione or to selected synthetic glutathione analogs as part of the natural catalytic cycle, individual contributions to binding of specific molecular groups can be quantified by changes in ligand-induced stability. These changes in conformational stability are interpreted in terms of interaction energies (i.e. specificity) of the particular groups present on the ligand analog. Our results illustrate that although Grx3 recognizes glutathione predominantly through independent and additive ionic interactions at the N- and C-terminal of glutathione, van der Waals interactions from the unique gamma-glutamate moiety of glutathione also play an important role. This study places us closer to understanding the complex task of accommodating multiple substrate specificities in proteins of the thioredoxin superfamily and underscores the general applicability of ligand-induced stability to probe substrate specificity.

DOI: 10.1074/jbc.M804019200
PubMed: 18757366


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Quantifying Escherichia coli glutaredoxin-3 substrate specificity using ligand-induced stability.</title>
<author>
<name sortKey="Elgan, Tobias H" sort="Elgan, Tobias H" uniqKey="Elgan T" first="Tobias H" last="Elgán">Tobias H. Elgán</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biosciences and Nutrition, Karolinska Institutet, S-141 57, Huddinge, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Biosciences and Nutrition, Karolinska Institutet, S-141 57, Huddinge</wicri:regionArea>
<wicri:noRegion>Huddinge</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Berndt, Kurt D" sort="Berndt, Kurt D" uniqKey="Berndt K" first="Kurt D" last="Berndt">Kurt D. Berndt</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2008">2008</date>
<idno type="RBID">pubmed:18757366</idno>
<idno type="pmid">18757366</idno>
<idno type="doi">10.1074/jbc.M804019200</idno>
<idno type="wicri:Area/Main/Corpus">000B63</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000B63</idno>
<idno type="wicri:Area/Main/Curation">000B63</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000B63</idno>
<idno type="wicri:Area/Main/Exploration">000B63</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Quantifying Escherichia coli glutaredoxin-3 substrate specificity using ligand-induced stability.</title>
<author>
<name sortKey="Elgan, Tobias H" sort="Elgan, Tobias H" uniqKey="Elgan T" first="Tobias H" last="Elgán">Tobias H. Elgán</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biosciences and Nutrition, Karolinska Institutet, S-141 57, Huddinge, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Biosciences and Nutrition, Karolinska Institutet, S-141 57, Huddinge</wicri:regionArea>
<wicri:noRegion>Huddinge</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Berndt, Kurt D" sort="Berndt, Kurt D" uniqKey="Berndt K" first="Kurt D" last="Berndt">Kurt D. Berndt</name>
</author>
</analytic>
<series>
<title level="j">The Journal of biological chemistry</title>
<idno type="ISSN">0021-9258</idno>
<imprint>
<date when="2008" type="published">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Catalysis (MeSH)</term>
<term>Disulfides (MeSH)</term>
<term>Escherichia coli (metabolism)</term>
<term>Glutaredoxins (chemistry)</term>
<term>Glutathione (chemistry)</term>
<term>Ligands (MeSH)</term>
<term>Models, Molecular (MeSH)</term>
<term>Molecular Conformation (MeSH)</term>
<term>Protein Binding (MeSH)</term>
<term>Protein Conformation (MeSH)</term>
<term>Protein Denaturation (MeSH)</term>
<term>Protein Structure, Tertiary (MeSH)</term>
<term>Substrate Specificity (MeSH)</term>
<term>Thermodynamics (MeSH)</term>
<term>Thioredoxins (chemistry)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Catalyse (MeSH)</term>
<term>Conformation des protéines (MeSH)</term>
<term>Conformation moléculaire (MeSH)</term>
<term>Disulfures (MeSH)</term>
<term>Dénaturation des protéines (MeSH)</term>
<term>Escherichia coli (métabolisme)</term>
<term>Glutarédoxines (composition chimique)</term>
<term>Glutathion (composition chimique)</term>
<term>Liaison aux protéines (MeSH)</term>
<term>Ligands (MeSH)</term>
<term>Modèles moléculaires (MeSH)</term>
<term>Spécificité du substrat (MeSH)</term>
<term>Structure tertiaire des protéines (MeSH)</term>
<term>Thermodynamique (MeSH)</term>
<term>Thiorédoxines (composition chimique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Glutaredoxins</term>
<term>Glutathione</term>
<term>Thioredoxins</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Disulfides</term>
<term>Ligands</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Glutarédoxines</term>
<term>Glutathion</term>
<term>Thiorédoxines</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Escherichia coli</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Escherichia coli</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Catalysis</term>
<term>Models, Molecular</term>
<term>Molecular Conformation</term>
<term>Protein Binding</term>
<term>Protein Conformation</term>
<term>Protein Denaturation</term>
<term>Protein Structure, Tertiary</term>
<term>Substrate Specificity</term>
<term>Thermodynamics</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Catalyse</term>
<term>Conformation des protéines</term>
<term>Conformation moléculaire</term>
<term>Disulfures</term>
<term>Dénaturation des protéines</term>
<term>Liaison aux protéines</term>
<term>Ligands</term>
<term>Modèles moléculaires</term>
<term>Spécificité du substrat</term>
<term>Structure tertiaire des protéines</term>
<term>Thermodynamique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Traditionally, quantification of protein-ligand affinity is performed using kinetic or equilibrium measurements. However, if the binding reaction proceeds via a stable covalent complex, these approaches are often limited. By exploiting the fact that the conformational stabilization of a protein is altered upon ligand binding due to specific interactions, and using an array of selectively chosen ligand analogs, one can quantify the contribution individual interactions have on specificity. We have used ligand-induced stability as a basis to dissect the interaction between glutaredoxin-3 (Grx3) and one of its native substrates, the tripeptide glutathione. Taking advantage of the fact that Grx3 can be trapped in a covalent mixed disulfide to glutathione or to selected synthetic glutathione analogs as part of the natural catalytic cycle, individual contributions to binding of specific molecular groups can be quantified by changes in ligand-induced stability. These changes in conformational stability are interpreted in terms of interaction energies (i.e. specificity) of the particular groups present on the ligand analog. Our results illustrate that although Grx3 recognizes glutathione predominantly through independent and additive ionic interactions at the N- and C-terminal of glutathione, van der Waals interactions from the unique gamma-glutamate moiety of glutathione also play an important role. This study places us closer to understanding the complex task of accommodating multiple substrate specificities in proteins of the thioredoxin superfamily and underscores the general applicability of ligand-induced stability to probe substrate specificity.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">18757366</PMID>
<DateCompleted>
<Year>2009</Year>
<Month>01</Month>
<Day>22</Day>
</DateCompleted>
<DateRevised>
<Year>2013</Year>
<Month>11</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0021-9258</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>283</Volume>
<Issue>47</Issue>
<PubDate>
<Year>2008</Year>
<Month>Nov</Month>
<Day>21</Day>
</PubDate>
</JournalIssue>
<Title>The Journal of biological chemistry</Title>
<ISOAbbreviation>J Biol Chem</ISOAbbreviation>
</Journal>
<ArticleTitle>Quantifying Escherichia coli glutaredoxin-3 substrate specificity using ligand-induced stability.</ArticleTitle>
<Pagination>
<MedlinePgn>32839-47</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1074/jbc.M804019200</ELocationID>
<Abstract>
<AbstractText>Traditionally, quantification of protein-ligand affinity is performed using kinetic or equilibrium measurements. However, if the binding reaction proceeds via a stable covalent complex, these approaches are often limited. By exploiting the fact that the conformational stabilization of a protein is altered upon ligand binding due to specific interactions, and using an array of selectively chosen ligand analogs, one can quantify the contribution individual interactions have on specificity. We have used ligand-induced stability as a basis to dissect the interaction between glutaredoxin-3 (Grx3) and one of its native substrates, the tripeptide glutathione. Taking advantage of the fact that Grx3 can be trapped in a covalent mixed disulfide to glutathione or to selected synthetic glutathione analogs as part of the natural catalytic cycle, individual contributions to binding of specific molecular groups can be quantified by changes in ligand-induced stability. These changes in conformational stability are interpreted in terms of interaction energies (i.e. specificity) of the particular groups present on the ligand analog. Our results illustrate that although Grx3 recognizes glutathione predominantly through independent and additive ionic interactions at the N- and C-terminal of glutathione, van der Waals interactions from the unique gamma-glutamate moiety of glutathione also play an important role. This study places us closer to understanding the complex task of accommodating multiple substrate specificities in proteins of the thioredoxin superfamily and underscores the general applicability of ligand-induced stability to probe substrate specificity.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Elgán</LastName>
<ForeName>Tobias H</ForeName>
<Initials>TH</Initials>
<AffiliationInfo>
<Affiliation>Department of Biosciences and Nutrition, Karolinska Institutet, S-141 57, Huddinge, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Berndt</LastName>
<ForeName>Kurt D</ForeName>
<Initials>KD</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2008</Year>
<Month>08</Month>
<Day>29</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Biol Chem</MedlineTA>
<NlmUniqueID>2985121R</NlmUniqueID>
<ISSNLinking>0021-9258</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004220">Disulfides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008024">Ligands</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>52500-60-4</RegistryNumber>
<NameOfSubstance UI="D013879">Thioredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GAN16C9B8O</RegistryNumber>
<NameOfSubstance UI="D005978">Glutathione</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002384" MajorTopicYN="N">Catalysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004220" MajorTopicYN="N">Disulfides</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004926" MajorTopicYN="N">Escherichia coli</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005978" MajorTopicYN="N">Glutathione</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008024" MajorTopicYN="N">Ligands</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008968" MajorTopicYN="N">Molecular Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011487" MajorTopicYN="N">Protein Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011489" MajorTopicYN="N">Protein Denaturation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017434" MajorTopicYN="N">Protein Structure, Tertiary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013379" MajorTopicYN="N">Substrate Specificity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013816" MajorTopicYN="N">Thermodynamics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013879" MajorTopicYN="N">Thioredoxins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2008</Year>
<Month>9</Month>
<Day>2</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2009</Year>
<Month>1</Month>
<Day>23</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2008</Year>
<Month>9</Month>
<Day>2</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">18757366</ArticleId>
<ArticleId IdType="pii">M804019200</ArticleId>
<ArticleId IdType="doi">10.1074/jbc.M804019200</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Suède</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Berndt, Kurt D" sort="Berndt, Kurt D" uniqKey="Berndt K" first="Kurt D" last="Berndt">Kurt D. Berndt</name>
</noCountry>
<country name="Suède">
<noRegion>
<name sortKey="Elgan, Tobias H" sort="Elgan, Tobias H" uniqKey="Elgan T" first="Tobias H" last="Elgán">Tobias H. Elgán</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B81 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000B81 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:18757366
   |texte=   Quantifying Escherichia coli glutaredoxin-3 substrate specificity using ligand-induced stability.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:18757366" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020